میانگینپذیری و میانگینپذیری ضعیف دوگان دوم جبرهای باناخ

پایان نامه
چکیده

این پایان نامه شامل سه فصل است. در فصل اول تعاریف و مفاهیم مورد نیاز و همچنین قضایایی در مورد دوگان دوم جبرهای باناخ بیان شده پایان این فصل ما را به تعریف (l1(g رهمنون می سازد. در فصل دوم اعمال مختلف روی یک جبر باناخ، همچون ضرب مدولی، ضرب آرنز و ضرب تانسوری را بررسی خواهیم کرد.همچنین در این فصل ثابت می کنیم که a** با هر یک از ضربهای آرنز جبر باناخ است. مفاهیم و قضایای این فصل از اهمیت زیادی برخوردار است تا آن جا که می توان ادغان داشت این فصل مبنای این پایان نامه است و در بسیاری از قضایای فل سوم ما را یاری خواهند رساند. در فل سوم ابندا میانگین پذیری گروه و جبر را تعریف خواهیم کرد و مفاهیمی چون اشتقاق، اشتقاق درونی و نخستین گروه کوهومولوژی ارائه خواهند شد. در پایان بخش اول از این فصل قضیههای بسیار مهم اثبات شده اند که تحت آنها رابطه میانگین پذیری گروه g و گروه جبری (l1(g بررسی شده است. سپس تعاریف جدیدی برای میانگین پذیری جبر باناخ با استفاده از قطر تقریبی و قطر مجازی آورده ایم و نشان می دهیم که باتعریف قبلی معادل است. هدف از بیانتعاریف اخیر در مفهوم میانگین پذیری تحقیق در رابطه میانگین پذیری جبر باناخ a و دوگان دومش می باشد.در ادامه به اثبات میانگین پذیری (l1**(gو(m**(g برای گروه های متناهی می پردازیمو همچنین در قضیه گورداوو ثابت می کنیم در حالت کلی جبر باناخ a همراه با دوگان دوم میانگین پذیر a** ,میانگین پذیر است. آخرین بخش این ماله به میانگین پذیری ضعیف اختصاص یافته است.این مطلب که آیا میانگین پذیری ضعیف a** میانگین پذیری ضعیف a را نتیجه میدهد یا نه هنوز اثبات یا رد نشده ا ست اما برای برخی فضاها مانند (l1(g وقتی g میانگین پذیر و جبر باناخ منظم آرنز a ثابت شده است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مرکز توپولوژیکی ضعیف از دوگان دوم جبرهای باناخ

در این مقاله برای اولین بار مفهوم جدیدی به عنوان مرکز توپولوژیکی ضعیف چپ و راست برای دوگان دوم جبرهای باناخ a ، را تعریف کرده و رابطۀ آن را با آرنز منظم پذیری بررسی می کنیم.

متن کامل

میانگین پذیری و میانگین پذیری ضعیف دوگان دوم جبرهای باناخ

یکی از نظریه ها که مورد علاقه ریاضیدانان جهت تحقیق و مطالعه در گرایش آنالیز هارمونیک می باشد، نظریهمیانگین پذیری جبرهای باناخ است. اگرaیک جبر باناخ باشد می دانیمa^(**)نیز به همراه دو نوع ضرب به نام ضرب های آرنز اول و آرنز دوم به یک جبر باناخ تبدیل می شود، حال این سوال مطرح می شود که آیا ارتباطی بین میانگین پذیری این دو جبر باناخ هست؟ یعنی اگر a میانگین پذیر باشد، آیا دوگان دوم آن میانگین پذی...

15 صفحه اول

میانگین پذیری ضعیف روی دوگان دوم جبرهای باناخ

میانگین پذیری دوگان دوم یک جبر باناخ aمیانگین پذیری جبر باناخaرا نتیجه می دهد.اما تاکنون مثالی ارائه نشده است که نشان دهد میانگین پذیری ضعیف دوگان دوم جبر باناخ aمیانگین پذیری ضعیف aرا نتیجه ندهد.این ویژگی برای جبر گروهی (l1(gو جبرهای فوریه (a(gزمانی که gیک گروه میانگین پذیر باشد ثابت شده است.همچنین برای جبر باناخa زمانی که a منظم آرنز باشد و هر اشتقاق از a به *aفشرده ضعیف باشد و همچنینa یک اید...

15 صفحه اول

n-میانگین پذیری ضعیف دوگان دوم جبرهای باناخ

در این پایا‏ن نامه‏، به ‏سه مفهوم کلی میانگین پذیری‏، میانگین پذیری ضعیف و ‎-‎n‎ ‎میانگین پذیری ضعیف دوگان دوم جبر باناخ a‎ ‎‏ می پردازیم. در ابتدا مفهوم میانگین پذیری دوگان دوم جبر باناخ را بیان کرده و نشان خواهیم داد که جبر باناخ ‎ ‎a‎ ‎‏ خاصیت میانگین پذیری را از دوگان دوم خود به ارث می برد. در ادامه به بیان مفهوم آرنز منظمی نگاشت های دوخطی روی فضاهای نرم دار می پردازیم‏، سپس شرایطی را که تح...

میانگین پذیری ومیانگین پذیری ضعیف دوگان دوم جبرهای باناخ

فرض کنیم a یک جبر باناخ باشدو **a دوگان دوم a با ضرب آرنز اول.همچنین فرض کنیم d از a به **a یک اشتقاق پیوسته باشد.در این پایان نامه تلاش میکنیم نشان دهیم که اگر دوگان چهارم a را به عنوان یک **a-دو مدول باناخ با ساختمان طبیعی مدولی در نظر بگیریم الحاق دوم d نیز اشتقاق است. همچنین تلاش میکنیم دریابیم که چه زمانی میانگین پذیری ضعیف **a, میانگین پذیری ضعیف a را نتیجه میدهد.

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023